

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

GENETIC STATS

Wolfiness: 4.7 % **HIGH**

Predicted adult weight: **46 lbs**

Life stage: **Young adult**

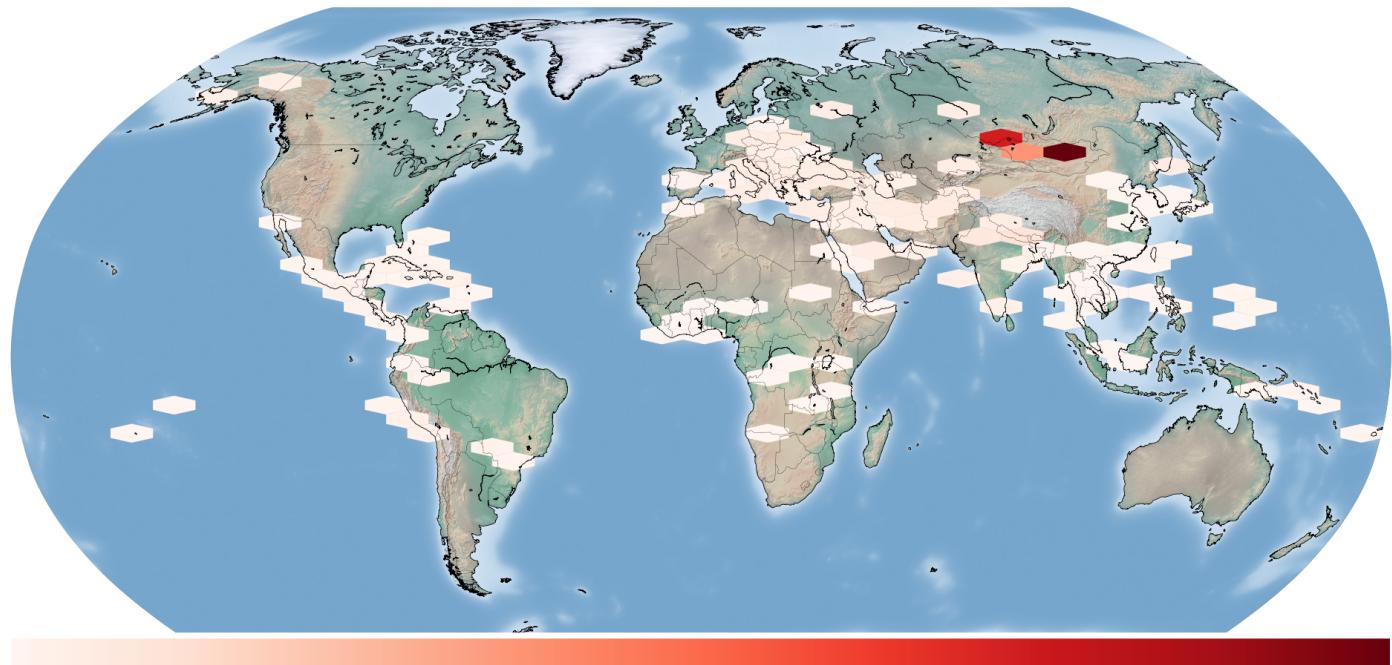
Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-38579843

Swab number: 31220711408251

Registration: N/A FI37387/20



ORIGINS

Village dogs have lived just about everywhere across the world for thousands of years. Long before there were any recognized dog breeds, there were village dogs around the fires and trash heaps of early human villages. Irina is part of this ancient heritage, not descended from a specific breed, but continuing the ancient lineage of dogs that were our first, best friends.

Embark's co-founders studied Village Dogs on six continents in their efforts to understand the history, traits, and health of the domestic dog. Through this work, they discovered evidence for the origins of the dog in Central Asia, and they also identified genetic regions involved in domestication and local adaptation. As a result, Embark has the largest Village Dog reference panel of any canine genetics company.

We compared Irina's DNA to a global panel of thousands of village dogs. This plot highlights regions of the world where Irina's DNA is most similar to those village dogs. The areas of darkest red reflect the greatest similarity to our village dog panel.

Similarity to village dog groups around the world. Darker red reflects greater similarity.

IRINA

 embark

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

CENTRAL ASIAN VILLAGE DOG

Fun Fact

Central Asian Village Dogs contain the highest levels of genetic diversity, and they are the furthest away (genetically speaking) from European dog breeds.

Central Asian Village Dogs are very special dogs. While they might not look like much—they are sort of a drab color, and they look a little bit like coyotes—they are a gem in the dog world. They are suspected to be the closest living relative to the earliest ancestors of domestic dogs. Essentially, this means Central Asian Village Dogs are genetically the closest thing to the canines that ancient humans let into their camp thousands and thousands of years ago. More specifically, Central Asian Village Dogs can trace their ancestry over 15,000 years. Now, that's quite the family tree. People would have a hard time finding a Central Asian Village Dog to bring into their family—they'd have to travel to Central Asia to pick one up. These dogs are rarely bred on purpose; they generally just populate on their own. They can be both domesticated and undomesticated, and they can be found curling up in homes, at the campfires of their humans, or rummaging through the trash. They get along well with other dogs because some of them are still relatively feral and live in packs. In addition, they are generally friendly dogs if people are lucky enough to have one trust them. Keep in mind that feral dogs and companion dogs are very different. If someone traveling in Central Asia finds a dog running around with other dogs that look like Central Asian Village Dogs—don't touch them! Dogs like that are wild and do not respond to humans like domesticated dogs. Central Asian Village Dogs don't have a breed standard like other breeds—they can come in many colors, a variety of sizes, and can have short or medium length fur. People are unlikely to find them to have as pets; however, if they were to stumble across some, Central Asian Village Dogs make fine companions as long as they are obtained as little puppies and raised with humans. Prospective owners are unlikely to find a breeder of these dogs because they have developed in rural areas and are often strays. Rather than sought after and kept as pets, Central Asian Village Dogs should be appreciated for their historical and genetic significance. Without their contribution to the doggie gene pool, it is possible we wouldn't have the myriad of breeds that we love and appreciate today.

RELATED BREEDS

Bankhar
Sibling breed

Tibetan Mastiff
Sibling breed

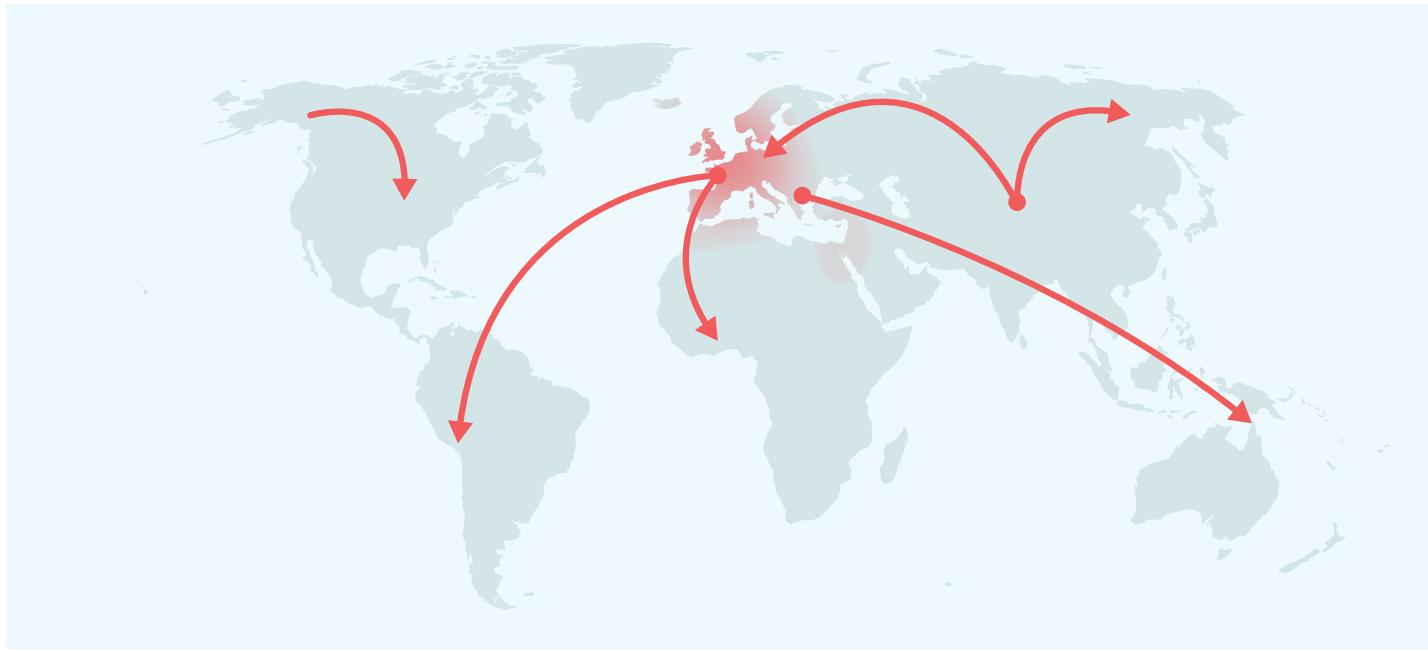
Laika
Sibling breed

Tibetan Terrier
Cousin breed

Registration:

 embark

IRINA



DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

MATERNAL LINE

Through Irina's mitochondrial DNA we can trace her mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1e

This female lineage likely stems from some of the original Central Asian wolves that were domesticated into modern dogs starting about 15,000 years ago. It seemed to be a fairly rare dog line for most of dog history until the past 300 years, when the lineage seemed to "explode" out and spread quickly. What really separates this group from the pack is its presence in Alaskan village dogs and Samoyeds. It is possible that this was an indigenous lineage brought to the Americas from Siberia when people were first starting to make that trip themselves! We see this lineage pop up in overwhelming numbers of Irish Wolfhounds, and it also occurs frequently in popular large breeds like Bernese Mountain Dogs, Saint Bernards and Great Danes. Shetland Sheepdogs are also common members of this maternal line, and we see it a lot in Boxers, too. Though it may be all mixed up with European dogs thanks to recent breeding events, its origins in the Americas makes it a very exciting lineage for sure!

HAPLOTYPE: A2b/322/504

Part of the A1e haplogroup, this haplotype occurs most frequently in mixed breed dogs.

IRINAembark

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

TRAITS: BASE COAT COLOR

TRAIT	RESULT
-------	--------

Dark or Light Fur | *E* (Extension) Locus | Gene: Melanocortin Receptor 1 (MC1R) | Genetic Result: **EE**

This gene helps determine whether a dog can produce dark (black or brown) hairs or lighter yellow or red hairs. Any result except for **ee** means that the dog can produce dark hairs. An **ee** result means that the dog does not produce dark hairs at all, and will have lighter yellow or red hairs over their entire body.

Can have dark fur

Did You Know? If a dog has a **ee** result then the fur's actual shade can range from a deep copper to yellow/gold to cream - the exact color cannot be predicted solely from this result, and will depend on other genetic factors.

Dark brown pigment | Cocoa | Gene: HPS3 | Genetic Result: **NN**

Dogs with the **coco** genotype will produce dark brown pigment instead of black in both their hair and skin.

Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** variant on to their puppies.

Dogs that have the **coco** genotype as well as the **bb** genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus.

No impact on fur and skin color

Did You Know? The **co** variant and the dark brown "cocoa" coat color have only been documented in French Bulldogs. Dogs with the cocoa coat color are sometimes born with light brown coats that darken as they reach maturity.

Red Pigment Intensity LINKAGE | *I* (Intensity) Loci | Genetic Result: **Intermediate Red Pigmentation**

Intensity refers to the concentration of red pigment in the coat. Dogs with more densely concentrated (intense) pigment will be a deeper red, while dogs with less concentrated (dilute) pigment will be tan, yellow, cream, or white. Five locations in the dog genome explain approximately 70% of red pigmentation intensity variation across all dogs. Because the locations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

Intermediate Red Pigmentation

Did You Know? One of the genes that influences pigment intensity in dogs, TYR, is also responsible for intensity variation in domestic mice, cats, cattle, rabbits, and llamas. In dogs and humans, more genes are involved.

Registration:

embark

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

TRAITS: BASE COAT COLOR (CONTINUED)

TRAIT	RESULT
Brown or Black Pigment <i>B</i> (Brown) Locus Gene: Tyrosinase Related Protein 1 (<i>TYRP1</i>) Genetic Result: BB	Black or gray fur and skin

This gene helps determine whether a dog produces brown or black pigments. Dogs with a **bb** result produce brown pigment instead of black in both their hair and skin, while dogs with a **Bb** or **BB** result produce black pigment. Dogs that have **ee** at the E (Extension) Locus and **bb** at this B (Brown) Locus are likely to have red or cream coats and brown noses, eye rims, and footpads, which is sometimes referred to as "Dudley Nose" in Labrador Retrievers.

Did You Know? "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red".

Color Dilution | *D* (Dilute) Locus | Gene: Melanophilin (*MLPH*) | Genetic Result: **DD**

This gene helps determine whether a dog has lighter "diluted" pigment. A dog with a **Dd** or **DD** result will not be dilute. A dog with a **dd** result will have all their black or brown pigment lightened ("diluted") to gray or light brown, and may lighten red pigment to cream. This affects their fur, skin, and sometimes eye color. The D locus result that we report is determined by two different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and a less common allele known as "**d2**". Dogs with one **d1** allele and one **d2** allele are typically dilute. To view your dog's **d1** and **d2** test results, click the "SEE DETAILS" link in the upper right hand corner of the "Base Coat Color" section of the Traits page, and then click the "VIEW SUBLOCUS RESULTS" link at the bottom of the page.

Did You Know? There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Dilute dogs, especially in certain breeds, have a higher incidence of Color Dilution Alopecia which causes hair loss in some patches.

Black or gray fur and skin**Dark (non-dilute) fur and skin**

Registration:

TRAITS: COAT COLOR MODIFIERS

TRAIT	RESULT
-------	--------

Hidden Patterning | *K* (Dominant Black) Locus | Gene: Canine Beta-Defensin 103 (CBD103) | Genetic Result: **k^Yk^Y**

This gene helps determine whether the dog has a black coat. Dogs with a **k^Yk^Y** result will show a coat color pattern based on the result they have at the *A* (Agouti) Locus. A **K^BK^B** or **K^Bk^Y** result means the dog is dominant black, which overrides the fur pattern that would otherwise be determined by the *A* (Agouti) Locus. These dogs will usually have solid black or brown coats, or if they have **ee** at the *E* (Extension) Locus then red/cream coats, regardless of their result at the *A* (Agouti) Locus. Dogs who test as **K^Bk^Y** may be brindle rather than black or brown.

More likely to have patterned fur

Did You Know? Even if a dog is "dominant black" several other genes could still impact the dog's fur and cause other patterns, such as white spotting.

Body Pattern | *A* (Agouti) Locus | Gene: Agouti Signalling Protein (ASIP) | Genetic Result: **No Call**

This gene is responsible for causing different coat patterns. It only affects the fur of dogs that do not have **ee** at the *E* (Extension) Locus and do have **k^Yk^Y** at the *K* (Dominant Black) Locus. It controls switching between black and red pigment in hair cells, which means that it can cause a dog to have hairs that have sections of black and sections of red/cream, or hairs with different colors on different parts of the dog's body. Sable or Fawn dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti or Wolf Sable dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

No Call

Did You Know? The ASIP gene causes interesting coat patterns in many other species of animals as well as dogs.

Facial Fur Pattern | *E* (Extension) Locus | Gene: Melanocortin Receptor 1 (MC1R) | Genetic Result: **EE**

In addition to determining if a dog can develop dark fur at all, this gene can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of **E^m** in their result will have a mask, which is dark facial fur as seen in the German Shepherd and Pug. Dogs with no **E^m** in their result but one or two copies of **E^g** will instead have a "widow's peak", which is dark forehead fur.

No dark mask or grizzle facial fur patterns

Did You Know? The widow's peak is seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino".

IRINA

 embark

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

TRAITS: COAT COLOR MODIFIERS (CONTINUED)

TRAIT

RESULT

Saddle Tan | Gene: *RALY* | Genetic Result: **NI**

The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the **II** genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus **a^t** allele, so dogs that do not express **a^t** are not influenced by this gene.

Did You Know? The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd.

No impact on coat pattern

White Spotting | S (*White Spotting*) Locus | Gene: *MITF* | Genetic Result: **Ssp**

This gene is responsible for most of the white spotting observed in dogs. Dogs with a result of **spsp** will have a nearly white coat or large patches of white in their coat. Dogs with a result of **Ssp** will have more limited white spotting that is breed-dependent. A result of **SS** means that a dog likely has no white or minimal white in their coat. The S Locus does not explain all white spotting patterns in dogs and other causes are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their result at this gene.

Did You Know? Any dog can have white spotting regardless of coat color. The colored sections of the coat will reflect the dog's other genetic coat color results.

Likely to have some white areas in coat

Roan LINKAGE | R (*Roan*) Locus | Gene: *USH2A* | Genetic Result: **rr**

This gene, along with the S Locus, regulates whether a dog will have roaning. Dogs with at least one copy of **R** will likely have roaning on otherwise uniformly unpigmented white areas created by the S Locus. Roan may not be visible if white spotting is limited to small areas, such as the paws, chest, face, or tail. The extent of roaning varies from uniform roaning to non-uniform roaning, and patchy, non-uniform roaning may look similar to ticking. Roan does not appear in white areas created by other genes, such as a combination of the E Locus and I Locus (for example, Samoyeds). The roan pattern can appear with or without ticking.

Did You Know? Roan, tick, and Dalmatians' spots become visible a few weeks after birth. The R Locus is probably involved in the development of Dalmatians' spots.

Likely no impact on coat pattern

Registration:

 embark

IRINA

embark

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

TRAITS: COAT COLOR MODIFIERS (CONTINUED)

TRAIT

RESULT

Merle | M (Merle) Locus | Gene: *PMEL* | Genetic Result: **mm**

This gene is responsible for mottled or patchy coat color in some dogs. Dogs with an **M*m** result are likely to appear merle or could be "non-expressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to have merle or double merle coat patterning. Dogs with an **mm** result are unlikely to have a merle coat pattern.

Unlikely to have merle pattern

Did You Know? Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog.

Harlequin | Gene: *PSMB* | Genetic Result: **hh**

This gene, along with the M Locus, determines whether a dog will have harlequin patterning. This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin.

No impact on coat pattern

Did You Know? While many harlequin dogs are white with black patches, some dogs have grey, sable, or brindle patches of color, depending on their genotypes at other coat color genes.

Registration:

embark

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

TRAITS: OTHER COAT TRAITS

TRAIT	RESULT
-------	--------

Furnishings LINKAGE | Gene: RSPO2 | Genetic Result: **II**

This gene is responsible for "furnishings", which is another name for the mustache, beard, and eyebrows that are characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with an **FF** or **FI** result is likely to have furnishings. A dog with an **II** result will not have furnishings. We measure this result using a linkage test.

Did You Know? In breeds that are expected to have furnishings, dogs without furnishings are the exception - this is sometimes called an "improper coat".

Coat Length | Gene: FGF5 | Genetic Result: **GG**

This gene is known to affect hair/fur length in many different species, including cats, dogs, mice, and humans. In dogs, a **TT** result means the dog is likely to have a long, silky coat as seen in the Yorkshire Terrier and the Long Haired Whippet. A **GG** or **GT** result is likely to mean a shorter coat, like in the Boxer or the American Staffordshire Terrier.

Did You Know? In certain breeds, such as Corgi, the long coat is described as "fluff."

Shedding | Gene: MC5R | Genetic Result: **CC**

This gene affects how much a dog sheds. Dogs with furnishings or wire-haired coats tend to be low shedders regardless of their result for this gene. In other dogs, a **CC** or **CT** result indicates heavy or seasonal shedding, like many Labradors and German Shepherd Dogs. Dogs with a **TT** result tend to be lighter shedders, like Boxers, Shih Tzus and Chihuahuas.

Likely short or mid-length coat

Coat Texture | Gene: KRT71 | Genetic Result: **CC**

For dogs with long fur, dogs with a **TT** or **CT** result will likely have a wavy or curly coat like the coat of Poodles and Bichon Frises. Dogs with a **CC** result will likely have a straight coat—unless the dog has a "Likely Furnished" result for the Furnishings trait, since this can also make the coat more curly.

Likely heavy/seasonal shedding

Did You Know? Dogs with short coats may have straight coats, whatever result they have for this gene.

Likely straight coat

Hairlessness (Xolo type) LINKAGE | Gene: FOXI3 | Genetic Result: **NN**

Registration:

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT	RESULT
Hairlessness (Terrier type) Gene: SGK3 Genetic Result: NN	Very unlikely to be hairless
This gene is responsible for Hairlessness in the American Hairless Terrier. Dogs with the DD result are likely to be hairless. Dogs with the ND genotype will have a normal coat, but can pass the D variant on to their offspring.	

Oculocutaneous Albinism Type 2 LINKAGE Gene: SLC45A2 Genetic Result: NN	Likely not albino
This gene causes oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism. Dogs with a DD result will have OCA. Effects include severely reduced or absent pigment in the eyes, skin, and hair, and sometimes vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a ND result will not be affected, but can pass the mutation on to their offspring. We measure this result using a linkage test.	

Did You Know? This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual.

Registration:

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

TRAITS: OTHER BODY FEATURES

TRAIT	RESULT
-------	--------

Muzzle Length | Gene: BMP3 | Genetic Result: **CC**

This gene affects muzzle length. A dog with a **AC** or **CC** result is likely to have a medium-length muzzle like a Staffordshire Terrier or Labrador, or a long muzzle like a Whippet or Collie. A dog with a **AA** result is likely to have a short muzzle, like an English Bulldog, Pug, or Pekingese.

Did You Know? At least five different genes affect snout length in dogs, with BMP3 being the only one with a known causal mutation. For example, the muzzle length of some breeds, including the long-snouted Scottish Terrier or the short-snouted Japanese Chin, appear to be caused by other genes. This means your dog may have a long or short snout due to other genetic factors. Embark is working to figure out what these might be.

Likely medium or long muzzle

Tail Length | Gene: *T* | Genetic Result: **CC**

This is one of the genes that can cause a short bobtail. Most dogs have a **CC** result and a long tail. Dogs with a **CG** result are likely to have a bobtail, which is an unusually short or absent tail. This can be seen in many "natural bobtail" breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with such a result do not survive to birth.

Likely normal-length tail

Did You Know? While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermanns are born with a natural bobtail, it is not always caused by this gene. This suggests that other unknown genetic effects can also lead to a natural bobtail.

Hind Dew Claws | Gene: *LMBR1* | Genetic Result: **CT**

This is one of the genes that can cause hind dew claws, which are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with a **CT** or **TT** result have about a 50% chance of having hind dew claws. Hind dew claws can also be caused by other, still unknown, genes. Embark is working to figure those out.

Likely to have hind dew claws

Did You Know? Hind dew claws are commonly found in certain breeds such as the Saint Bernard.

Registration:

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

RESULT

Back Muscling & Bulk (Large Breed) | Gene: ACSL4 | Genetic Result: **CC**

This gene can cause heavy muscling along the back and trunk in characteristically "bulky" large-breed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. A dog with the **TT** result is likely to have heavy muscling. Leaner-shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound generally have a **CC** result. The **TC** result also indicates likely normal muscling.

Likely normal muscling

Did You Know? This gene does not seem to affect muscling in small or even mid-sized dog breeds with lots of back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Eye Color LINKAGE | Gene: ALX4 | Genetic Result: **NN**

This gene is associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with a **DupDup** or **NDup** result are more likely to have blue eyes, although some dogs may have only one blue eye or may not have blue eyes at all; nevertheless, they can still pass blue eyes to their offspring. Dogs with a **NN** result may have blue eyes due to other factors, such as merle or white spotting. We measure this result using a linkage test.

Less likely to have blue eyes

Did You Know? Embark researchers discovered this gene by studying data from dogs like yours. Who knows what we will be able to discover next? Answer the questions on our research surveys to contribute to future discoveries!

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

TRAITS: BODY SIZE

TRAIT	RESULT
-------	--------

Body Size 1 | Gene: *IGF1* | Genetic Result: **NN**

This is one of several genes that influence the size of a dog. A result of **II** for this gene is associated with smaller body size. A result of **NN** is associated with larger body size.

Larger**Body Size 2** | Gene: *IGFR1* | Genetic Result: **GG**

This is one of several genes that influence the size of a dog. A result of **AA** for this gene is associated with smaller body size. A result of **GG** is associated with larger body size.

Larger**Body Size 3** | Gene: *STC2* | Genetic Result: **TT**

This is one of several genes that influence the size of a dog. A result of **AA** for this gene is associated with smaller body size. A result of **TT** is associated with larger body size.

Larger**Body Size 4** | Gene: *GHR - E191K* | Genetic Result: **GG**

This is one of several genes that influence the size of a dog. A result of **AA** for this gene is associated with smaller body size. A result of **GG** is associated with larger body size.

Larger**Body Size 5** | Gene: *GHR - P177L* | Genetic Result: **CC**

This is one of several genes that influence the size of a dog. A result of **TT** for this gene is associated with smaller body size. A result of **CC** is associated with larger body size.

Larger

Registration:

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

TRAITS: PERFORMANCE

TRAIT	RESULT
-------	--------

Altitude Adaptation | Gene: *EPAS1* | Genetic Result: **GG**

This gene causes dogs to be especially tolerant of low oxygen environments, such as those found at high elevations. Dogs with a **AA** or **GA** result will be less susceptible to "altitude sickness."

Normal altitude tolerance

Did You Know? This gene was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.

Appetite LINKAGE | Gene: *POMC* | Genetic Result: **NN**

This gene influences eating behavior. An **ND** or **DD** result would predict higher food motivation compared to **NN** result, increasing the likelihood to eat excessively, have higher body fat percentage, and be more prone to obesity. Read more about the genetics of *POMC*, and learn how you can contribute to research, in our blog post (<https://embarkvet.com/resources/blog/pomc-dogs/>). We measure this result using a linkage test.

Normal food motivation

Did You Know? *POMC* is actually short for "proopiomelanocortin," and is a large protein that is broken up into several smaller proteins that have biological activity. The smaller proteins generated from *POMC* control, among other things, distribution of pigment to the hair and skin cells, appetite, and energy expenditure.

Registration:

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

HEALTH REPORT

How to interpret Irina's genetic health results:

If Irina inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Irina for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Of the 255 genetic health risks we analyzed, we found 2 results that you should learn about.

Notable results (2)

ALT Activity

Primary Open Angle Glaucoma

Clear results

Other (253)

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Irina. Review any increased risk or notable results to understand her potential risk and recommendations.

<input type="checkbox"/> -	ALT Activity (GPT)	Notable
<input type="checkbox"/> -	Primary Open Angle Glaucoma (ADAMTS10 Exon 17, Beagle Variant)	Notable
<input checked="" type="checkbox"/>	2-DHA Kidney & Bladder Stones (APRT)	Clear
<input checked="" type="checkbox"/>	Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
<input checked="" type="checkbox"/>	Alaskan Husky Encephalopathy (SLC19A3)	Clear
<input checked="" type="checkbox"/>	Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
<input checked="" type="checkbox"/>	Alexander Disease (GFAP)	Clear
<input checked="" type="checkbox"/>	Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
<input checked="" type="checkbox"/>	Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
<input checked="" type="checkbox"/>	Bald Thigh Syndrome (IGFBP5)	Clear
<input checked="" type="checkbox"/>	Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
<input checked="" type="checkbox"/>	Bully Whippet Syndrome (MSTN)	Clear
<input checked="" type="checkbox"/>	Canine Elliptocytosis (SPTB Exon 30)	Clear
<input checked="" type="checkbox"/>	Canine Fucosidosis (FUCA1)	Clear
<input checked="" type="checkbox"/>	Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
<input checked="" type="checkbox"/>	Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
<input checked="" type="checkbox"/>	Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
<input checked="" type="checkbox"/>	Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

OTHER RESULTS

✓ Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear
✓ Canine Multiple System Degeneration (SERAC1 Exon 4, Chinese Crested Variant)	Clear
✓ Canine Multiple System Degeneration (SERAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
✓ Cardiomyopathy and Juvenile Mortality (YARS2)	Clear
✓ Centronuclear Myopathy, CNM (PTPLA)	Clear
✓ Cerebellar Hypoplasia (VLDLR, Eurasier Variant)	Clear
✓ Chondrodystrophy (ITGA10, Norwegian Elkhound and Karelian Bear Dog Variant)	Clear
✓ Cleft Lip and/or Cleft Palate (ADAMTS20, Nova Scotia Duck Tolling Retriever Variant)	Clear
✓ Cleft Palate, CP1 (DLX6 intron 2, Nova Scotia Duck Tolling Retriever Variant)	Clear
✓ Cobalamin Malabsorption (CUBN Exon 8, Beagle Variant)	Clear
✓ Cobalamin Malabsorption (CUBN Exon 53, Border Collie Variant)	Clear
✓ Collie Eye Anomaly (NHEJ1)	Clear
✓ Complement 3 Deficiency, C3 Deficiency (C3)	Clear
✓ Congenital Cornification Disorder (NSDHL, Chihuahua Variant)	Clear
✓ Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant)	Clear
✓ Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant)	Clear
✓ Congenital Hypothyroidism with Goiter (TPO Intron 13, French Bulldog Variant)	Clear
✓ Congenital Hypothyroidism with Goiter (SLC5A5, Shih Tzu Variant)	Clear

Registration: N/A FI37387/20

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

OTHER RESULTS

<input checked="" type="checkbox"/> Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear
<input checked="" type="checkbox"/> Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant)	Clear
<input checked="" type="checkbox"/> Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant)	Clear
<input checked="" type="checkbox"/> Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant)	Clear
<input checked="" type="checkbox"/> Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant)	Clear
<input checked="" type="checkbox"/> Congenital Stationary Night Blindness (LRIT3, Beagle Variant)	Clear
<input checked="" type="checkbox"/> Congenital Stationary Night Blindness (RPE65, Briard Variant)	Clear
<input checked="" type="checkbox"/> Craniomandibular Osteopathy, CMO (SLC37A2)	Clear
<input checked="" type="checkbox"/> Craniomandibular Osteopathy, CMO (SLC37A2 Intron 16, Basset Hound Variant)	Clear
<input checked="" type="checkbox"/> Cystinuria Type I-A (SLC3A1, Newfoundland Variant)	Clear
<input checked="" type="checkbox"/> Cystinuria Type II-A (SLC3A1, Australian Cattle Dog Variant)	Clear
<input checked="" type="checkbox"/> Cystinuria Type II-B (SLC7A9, Miniature Pinscher Variant)	Clear
<input checked="" type="checkbox"/> Day Blindness (CNGB3 Deletion, Alaskan Malamute Variant)	Clear
<input checked="" type="checkbox"/> Day Blindness (CNGA3 Exon 7, German Shepherd Variant)	Clear
<input checked="" type="checkbox"/> Day Blindness (CNGA3 Exon 7, Labrador Retriever Variant)	Clear
<input checked="" type="checkbox"/> Day Blindness (CNGB3 Exon 6, German Shorthaired Pointer Variant)	Clear
<input checked="" type="checkbox"/> Deafness and Vestibular Syndrome of Dobermanns, DVDOB, DINGS (MYO7A)	Clear
<input checked="" type="checkbox"/> Degenerative Myelopathy, DM (SOD1A)	Clear

Registration: N/A FI37387/20

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

OTHER RESULTS

✓ Demyelinating Polyneuropathy (SBF2/MTRM13)	Clear
✓ Dental-Skeletal-Retinal Anomaly (MIA3, Cane Corso Variant)	Clear
✓ Diffuse Cystic Renal Dysplasia and Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant)	Clear
✓ Dilated Cardiomyopathy, DCM (RBM20, Schnauzer Variant)	Clear
✓ Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1)	Clear
✓ Dilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2)	Clear
✓ Disproportionate Dwarfism (PRKG2, Dogo Argentino Variant)	Clear
✓ Dry Eye Curly Coat Syndrome (FAM83H Exon 5)	Clear
✓ Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant)	Clear
✓ Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant)	Clear
✓ Early Bilateral Deafness (LOXHD1 Exon 38, Rottweiler Variant)	Clear
✓ Early Onset Adult Deafness, EOAD (EPS8L2 Deletion, Rhodesian Ridgeback Variant)	Clear
✓ Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant)	Clear
✓ Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant)	Clear
✓ Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant)	Clear
✓ Enamel Hypoplasia (ENAM SNP, Parson Russell Terrier Variant)	Clear
✓ Episodic Falling Syndrome (BCAN)	Clear
✓ Exercise-Induced Collapse, EIC (DNM1)	Clear

Registration: N/A FI37387/20

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

OTHER RESULTS

✓ Factor VII Deficiency (F7 Exon 5)	Clear
✓ Factor XI Deficiency (F11 Exon 7, Kerry Blue Terrier Variant)	Clear
✓ Familial Nephropathy (COL4A4 Exon 3, Cocker Spaniel Variant)	Clear
✓ Familial Nephropathy (COL4A4 Exon 30, English Springer Spaniel Variant)	Clear
✓ Fanconi Syndrome (FAN1, Basenji Variant)	Clear
✓ Fetal-Onset Neonatal Neuroaxonal Dystrophy (MFN2, Giant Schnauzer Variant)	Clear
✓ Glanzmann's Thrombasthenia Type I (ITGA2B Exon 13, Great Pyrenees Variant)	Clear
✓ Glanzmann's Thrombasthenia Type I (ITGA2B Exon 12, Otterhound Variant)	Clear
✓ Globoid Cell Leukodystrophy, Krabbe disease (GALC Exon 5, Terrier Variant)	Clear
✓ Glycogen Storage Disease Type IA, Von Gierke Disease, GSD IA (G6PC, Maltese Variant)	Clear
✓ Glycogen Storage Disease Type IIIA, GSD IIIA (AGL, Curly Coated Retriever Variant)	Clear
✓ Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Whippet and English Springer Spaniel Variant)	Clear
✓ Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Wachtelhund Variant)	Clear
✓ GM1 Gangliosidosis (GLB1 Exon 2, Portuguese Water Dog Variant)	Clear
✓ GM1 Gangliosidosis (GLB1 Exon 15, Shiba Inu Variant)	Clear
✓ GM1 Gangliosidosis (GLB1 Exon 15, Alaskan Husky Variant)	Clear
✓ GM2 Gangliosidosis (HEXA, Japanese Chin Variant)	Clear
✓ GM2 Gangliosidosis (HEXB, Poodle Variant)	Clear

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

OTHER RESULTS

✓ Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1 (SLC4A3)	Clear
✓ Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)	Clear
✓ Goniodygenesis and Glaucoma, Pectinate Ligament Dysplasia, PLD (OLFM3)	Clear
✓ Hemophilia A (F8 Exon 11, German Shepherd Variant 1)	Clear
✓ Hemophilia A (F8 Exon 1, German Shepherd Variant 2)	Clear
✓ Hemophilia A (F8 Exon 10, Boxer Variant)	Clear
✓ Hemophilia B (F9 Exon 7, Terrier Variant)	Clear
✓ Hemophilia B (F9 Exon 7, Rhodesian Ridgeback Variant)	Clear
✓ Hereditary Ataxia, Cerebellar Degeneration (RAB24, Old English Sheepdog and Gordon Setter Variant)	Clear
✓ Hereditary Cataracts (HSF4 Exon 9, Australian Shepherd Variant)	Clear
✓ Hereditary Footpad Hyperkeratosis (FAM83G, Terrier and Kromfohrlander Variant)	Clear
✓ Hereditary Footpad Hyperkeratosis (DSG1, Rottweiler Variant)	Clear
✓ Hereditary Nasal Parakeratosis (SUV39H2 Intron 4, Greyhound Variant)	Clear
✓ Hereditary Nasal Parakeratosis, HNPK (SUV39H2)	Clear
✓ Hereditary Vitamin D-Resistant Rickets (VDR)	Clear
✓ Hypocatalasia, Acatalasemia (CAT)	Clear
✓ Hypomyelination and Tremors (FNIP2, Weimaraner Variant)	Clear
✓ Hypophosphatasia (ALPL Exon 9, Karelian Bear Dog Variant)	Clear

Registration: N/A FI37387/20

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

OTHER RESULTS

<input checked="" type="checkbox"/> Ichthyosis (NIPAL4, American Bulldog Variant)	Clear
<input checked="" type="checkbox"/> Ichthyosis (ASPRV1 Exon 2, German Shepherd Variant)	Clear
<input checked="" type="checkbox"/> Ichthyosis (SLC27A4, Great Dane Variant)	Clear
<input checked="" type="checkbox"/> Ichthyosis, Epidermolytic Hyperkeratosis (KRT10, Terrier Variant)	Clear
<input checked="" type="checkbox"/> Ichthyosis, ICH1 (PNPLA1, Golden Retriever Variant)	Clear
<input checked="" type="checkbox"/> Inflammatory Myopathy (SLC25A12)	Clear
<input checked="" type="checkbox"/> Inherited Myopathy of Great Danes (BIN1)	Clear
<input checked="" type="checkbox"/> Inherited Selected Cobalamin Malabsorption with Proteinuria (CUBN, Komondor Variant)	Clear
<input checked="" type="checkbox"/> Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12)	Clear
<input checked="" type="checkbox"/> Intestinal Lipid Malabsorption (ACSL5, Australian Kelpie)	Clear
<input checked="" type="checkbox"/> Junctional Epidermolysis Bullosa (LAMA3 Exon 66, Australian Cattle Dog Variant)	Clear
<input checked="" type="checkbox"/> Junctional Epidermolysis Bullosa (LAMB3 Exon 11, Australian Shepherd Variant)	Clear
<input checked="" type="checkbox"/> Juvenile Epilepsy (LGI2)	Clear
<input checked="" type="checkbox"/> Juvenile Laryngeal Paralysis and Polyneuropathy (RAB3GAP1, Rottweiler Variant)	Clear
<input checked="" type="checkbox"/> Juvenile Myoclonic Epilepsy (DIRAS1)	Clear
<input checked="" type="checkbox"/> L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant)	Clear
<input checked="" type="checkbox"/> Lagotto Storage Disease (ATG4D)	Clear
<input checked="" type="checkbox"/> Laryngeal Paralysis (RAPGEF6, Miniature Bull Terrier Variant)	Clear

Registration: N/A FI37387/20

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

OTHER RESULTS

<input checked="" type="checkbox"/> Late Onset Spinocerebellar Ataxia (CAPN1)	Clear
<input checked="" type="checkbox"/> Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant)	Clear
<input checked="" type="checkbox"/> Leonberger Polyneuropathy 1 (LPN1, ARHGEF10)	Clear
<input checked="" type="checkbox"/> Leonberger Polyneuropathy 2 (GJA9)	Clear
<input checked="" type="checkbox"/> Lethal Acrodermatitis, LAD (MKLN1)	Clear
<input checked="" type="checkbox"/> Leukodystrophy (TSEN54 Exon 5, Standard Schnauzer Variant)	Clear
<input checked="" type="checkbox"/> Ligneous Membranitis, LM (PLG)	Clear
<input checked="" type="checkbox"/> Limb Girdle Muscular Dystrophy (SGCD, Boston Terrier Variant)	Clear
<input checked="" type="checkbox"/> Limb-Girdle Muscular Dystrophy 2D (SGCA Exon 3, Miniature Dachshund Variant)	Clear
<input checked="" type="checkbox"/> Long QT Syndrome (KCNQ1)	Clear
<input checked="" type="checkbox"/> Lundehund Syndrome (LEPREL1)	Clear
<input checked="" type="checkbox"/> Macular Corneal Dystrophy, MCD (CHST6)	Clear
<input checked="" type="checkbox"/> Malignant Hyperthermia (RYR1)	Clear
<input checked="" type="checkbox"/> May-Hegglin Anomaly (MYH9)	Clear
<input checked="" type="checkbox"/> Methemoglobinemia (CYB5R3, Pit Bull Terrier Variant)	Clear
<input checked="" type="checkbox"/> Methemoglobinemia (CYB5R3)	Clear
<input checked="" type="checkbox"/> Microphthalmia (RBP4 Exon 2, Soft Coated Wheaten Terrier Variant)	Clear
<input checked="" type="checkbox"/> Mucopolysaccharidosis IIIB, Sanfilippo Syndrome Type B, MPS IIIB (NAGLU, Schipperke Variant)	Clear

Registration: N/A FI37387/20

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

OTHER RESULTS

<input checked="" type="checkbox"/> Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshund Variant)	Clear
<input checked="" type="checkbox"/> Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zealand Huntaway Variant)	Clear
<input checked="" type="checkbox"/> Mucopolysaccharidosis Type VI, Maroteaux-Lamy Syndrome, MPS VI (ARSB Exon 5, Miniature Pinscher Variant)	Clear
<input checked="" type="checkbox"/> Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3, German Shepherd Variant)	Clear
<input checked="" type="checkbox"/> Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant)	Clear
<input checked="" type="checkbox"/> Multiple Drug Sensitivity (ABCB1)	Clear
<input checked="" type="checkbox"/> Muscular Dystrophy (DMD, Cavalier King Charles Spaniel Variant 1)	Clear
<input checked="" type="checkbox"/> Muscular Dystrophy (DMD, Golden Retriever Variant)	Clear
<input checked="" type="checkbox"/> Musladin-Lueke Syndrome, MLS (ADAMTSL2)	Clear
<input checked="" type="checkbox"/> Myasthenia Gravis-Like Syndrome (CHRNE, Heideterrier Variant)	Clear
<input checked="" type="checkbox"/> Myotonia Congenita (CLCN1 Exon 23, Australian Cattle Dog Variant)	Clear
<input checked="" type="checkbox"/> Myotonia Congenita (CLCN1 Exon 7, Miniature Schnauzer Variant)	Clear
<input checked="" type="checkbox"/> Narcolepsy (HCRT2 Exon 1, Dachshund Variant)	Clear
<input checked="" type="checkbox"/> Narcolepsy (HCRT2 Intron 4, Doberman Pinscher Variant)	Clear
<input checked="" type="checkbox"/> Narcolepsy (HCRT2 Intron 6, Labrador Retriever Variant)	Clear
<input checked="" type="checkbox"/> Nemaline Myopathy (NEB, American Bulldog Variant)	Clear
<input checked="" type="checkbox"/> Neonatal Cerebellar Cortical Degeneration (SPTBN2, Beagle Variant)	Clear
<input checked="" type="checkbox"/> Neonatal Encephalopathy with Seizures, NEWS (ATF2)	Clear

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

OTHER RESULTS

<input checked="" type="checkbox"/> Neonatal Interstitial Lung Disease (LAMP3)	Clear
<input checked="" type="checkbox"/> Neuroaxonal Dystrophy, NAD (VPS11, Rottweiler Variant)	Clear
<input checked="" type="checkbox"/> Neuroaxonal Dystrophy, NAD (TECPR2, Spanish Water Dog Variant)	Clear
<input checked="" type="checkbox"/> Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1)	Clear
<input checked="" type="checkbox"/> Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant)	Clear
<input checked="" type="checkbox"/> Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2)	Clear
<input checked="" type="checkbox"/> Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)	Clear
<input checked="" type="checkbox"/> Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)	Clear
<input checked="" type="checkbox"/> Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)	Clear
<input checked="" type="checkbox"/> Neuronal Ceroid Lipofuscinosis 7, NCL 7 (MFSD8, Chihuahua and Chinese Crested Variant)	Clear
<input checked="" type="checkbox"/> Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8, Australian Shepherd Variant)	Clear
<input checked="" type="checkbox"/> Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Exon 2, English Setter Variant)	Clear
<input checked="" type="checkbox"/> Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Insertion, Saluki Variant)	Clear
<input checked="" type="checkbox"/> Neuronal Ceroid Lipofuscinosis, Cerebellar Ataxia, NCL4A (ARSG Exon 2, American Staffordshire Terrier Variant)	Clear
<input checked="" type="checkbox"/> Oculocutaneous Albinism, OCA (SLC45A2 Exon 6, Bullmastiff Variant)	Clear
<input checked="" type="checkbox"/> Oculocutaneous Albinism, OCA (SLC45A2, Small Breed Variant)	Clear
<input checked="" type="checkbox"/> Oculoskeletal Dysplasia 2 (COL9A2, Samoyed Variant)	Clear
<input checked="" type="checkbox"/> Osteochondrodysplasia (SLC13A1, Poodle Variant)	Clear

Registration: N/A FI37387/20

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

OTHER RESULTS

<input checked="" type="checkbox"/> Osteogenesis Imperfecta (COL1A2, Beagle Variant)	Clear
<input checked="" type="checkbox"/> Osteogenesis Imperfecta (SERPINH1, Dachshund Variant)	Clear
<input checked="" type="checkbox"/> Osteogenesis Imperfecta (COL1A1, Golden Retriever Variant)	Clear
<input checked="" type="checkbox"/> P2Y12 Receptor Platelet Disorder (P2Y12)	Clear
<input checked="" type="checkbox"/> Pachyonychia Congenita (KRT16, Dogue de Bordeaux Variant)	Clear
<input checked="" type="checkbox"/> Paroxysmal Dyskinesia, PxD (PIGN)	Clear
<input checked="" type="checkbox"/> Persistent Mullerian Duct Syndrome, PMDS (AMHR2)	Clear
<input checked="" type="checkbox"/> Pituitary Dwarfism (POU1F1 Intron 4, Karelian Bear Dog Variant)	Clear
<input checked="" type="checkbox"/> Platelet Factor X Receptor Deficiency, Scott Syndrome (TMEM16F)	Clear
<input checked="" type="checkbox"/> Polycystic Kidney Disease, PKD (PKD1)	Clear
<input checked="" type="checkbox"/> Pompe's Disease (GAA, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear
<input checked="" type="checkbox"/> Prekallikrein Deficiency (KLKB1 Exon 8)	Clear
<input checked="" type="checkbox"/> Primary Ciliary Dyskinesia, PCD (NME5, Alaskan Malamute Variant)	Clear
<input checked="" type="checkbox"/> Primary Ciliary Dyskinesia, PCD (CCDC39 Exon 3, Old English Sheepdog Variant)	Clear
<input checked="" type="checkbox"/> Primary Hyperoxaluria (AGXT)	Clear
<input checked="" type="checkbox"/> Primary Lens Luxation (ADAMTS17)	Clear
<input checked="" type="checkbox"/> Primary Open Angle Glaucoma (ADAMTS17 Exon 11, Basset Fauve de Bretagne Variant)	Clear
<input checked="" type="checkbox"/> Primary Open Angle Glaucoma (ADAMTS10 Exon 9, Norwegian Elkhound Variant)	Clear

Registration: N/A FI37387/20

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

OTHER RESULTS

✓ Primary Open Angle Glaucoma and Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei Variant)	Clear
✓ Progressive Retinal Atrophy (SAG)	Clear
✓ Progressive Retinal Atrophy (IFT122 Exon 26, Lapponian Herder Variant)	Clear
✓ Progressive Retinal Atrophy, Bardet-Biedl Syndrome (BBS2 Exon 11, Shetland Sheepdog Variant)	Clear
✓ Progressive Retinal Atrophy, CNGA (CNGA1 Exon 9)	Clear
✓ Progressive Retinal Atrophy, crd1 (PDE6B, American Staffordshire Terrier Variant)	Clear
✓ Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)	Clear
✓ Progressive Retinal Atrophy, PRA1 (CNGB1)	Clear
✓ Progressive Retinal Atrophy, PRA3 (FAM161A)	Clear
✓ Progressive Retinal Atrophy, prcd (PRCD Exon 1)	Clear
✓ Progressive Retinal Atrophy, rcd1 (PDE6B Exon 21, Irish Setter Variant)	Clear
✓ Progressive Retinal Atrophy, rcd3 (PDE6A)	Clear
✓ Proportionate Dwarfism (GH1 Exon 5, Chihuahua Variant)	Clear
✓ Protein Losing Nephropathy, PLN (NPHS1)	Clear
✓ Pyruvate Dehydrogenase Deficiency (PDP1, Spaniel Variant)	Clear
✓ Pyruvate Kinase Deficiency (PKLR Exon 5, Basenji Variant)	Clear
✓ Pyruvate Kinase Deficiency (PKLR Exon 7, Beagle Variant)	Clear
✓ Pyruvate Kinase Deficiency (PKLR Exon 10, Terrier Variant)	Clear

Registration: N/A FI37387/20

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

OTHER RESULTS

✓ Pyruvate Kinase Deficiency (PKLR Exon 7, Labrador Retriever Variant)	Clear
✓ Pyruvate Kinase Deficiency (PKLR Exon 7, Pug Variant)	Clear
✓ Raine Syndrome (FAM20C)	Clear
✓ Recurrent Inflammatory Pulmonary Disease, RILD (AKNA, Rough Collie Variant)	Clear
✓ Renal Cystadenocarcinoma and Nodular Dermatofibrosis (FLCN Exon 7)	Clear
✓ Retina Dysplasia and/or Optic Nerve Hypoplasia (SIX6 Exon 1, Golden Retriever Variant)	Clear
✓ Sensory Neuropathy (FAM134B, Border Collie Variant)	Clear
✓ Severe Combined Immunodeficiency, SCID (PRKDC, Terrier Variant)	Clear
✓ Severe Combined Immunodeficiency, SCID (RAG1, Wetterhoun Variant)	Clear
✓ Shaking Puppy Syndrome (PLP1, English Springer Spaniel Variant)	Clear
✓ Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP)	Clear
✓ Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant)	Clear
✓ Skin Fragility Syndrome (PKP1, Chesapeake Bay Retriever Variant)	Clear
✓ Spinocerebellar Ataxia (SCN8A, Alpine Dachsbracke Variant)	Clear
✓ Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10)	Clear
✓ Spongy Degeneration with Cerebellar Ataxia 1 (KCNJ10)	Clear
✓ Spongy Degeneration with Cerebellar Ataxia 2 (ATP1B2)	Clear
✓ Stargardt Disease (ABCA4 Exon 28, Labrador Retriever Variant)	Clear

Registration: N/A FI37387/20

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

OTHER RESULTS

<input checked="" type="checkbox"/> Succinic Semialdehyde Dehydrogenase Deficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear
<input checked="" type="checkbox"/> Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant)	Clear
<input checked="" type="checkbox"/> Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant)	Clear
<input checked="" type="checkbox"/> Thrombopathia (RASGRP1 Exon 8, Landseer Variant)	Clear
<input checked="" type="checkbox"/> Trapped Neutrophil Syndrome, TNS (VPS13B)	Clear
<input checked="" type="checkbox"/> Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)	Clear
<input checked="" type="checkbox"/> Ullrich-like Congenital Muscular Dystrophy (COL6A1 Exon 3, Landseer Variant)	Clear
<input checked="" type="checkbox"/> Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher)	Clear
<input checked="" type="checkbox"/> Urate Kidney & Bladder Stones (SLC2A9)	Clear
<input checked="" type="checkbox"/> Von Willebrand Disease Type I, Type I vWD (VWF)	Clear
<input checked="" type="checkbox"/> Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant)	Clear
<input checked="" type="checkbox"/> Von Willebrand Disease Type III, Type III vWD (VWF Exon 4, Terrier Variant)	Clear
<input checked="" type="checkbox"/> Von Willebrand Disease Type III, Type III vWD (VWF Intron 16, Nederlandse Kooikerhondje Variant)	Clear
<input checked="" type="checkbox"/> Von Willebrand Disease Type III, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant)	Clear
<input checked="" type="checkbox"/> X-Linked Hereditary Nephropathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)	Clear
<input checked="" type="checkbox"/> X-Linked Myotubular Myopathy (MTM1, Labrador Retriever Variant)	Clear
<input checked="" type="checkbox"/> X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR)	Clear
<input checked="" type="checkbox"/> X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant)	Clear

Registration: N/A FI37387/20

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

OTHER RESULTS

<input checked="" type="checkbox"/> X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG, Corgi Variant)	Clear
<input checked="" type="checkbox"/> Xanthine Urolithiasis (XDH, Mixed Breed Variant)	Clear
<input checked="" type="checkbox"/> β -Mannosidosis (MANBA Exon 16, Mixed-Breed Variant)	Clear

Registration: N/A FI37387/20

IRINA

embark

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

HEALTH REPORT

Notable result

ALT Activity

Irina inherited both copies of the variant we tested for Alanine Aminotransferase Activity

Why is this important to your vet?

Irina has two copies of a variant in the GPT gene and is likely to have a lower than average baseline ALT activity. ALT is a commonly used measure of liver health on routine veterinary blood chemistry panels. As such, your veterinarian may want to watch for changes in Irina's ALT activity above their current, healthy, ALT activity. As an increase above Irina's baseline ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is Alanine Aminotransferase Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

How vets diagnose this condition

Genetic testing is the only way to provide your veterinarian with this clinical tool.

How this condition is treated

Veterinarians may recommend blood work to establish a baseline ALT value for healthy dogs with one or two copies of this variant.

Registration:

embark

HEALTH REPORT

Notable result

Primary Open Angle Glaucoma

Irina inherited one copy of the variant we tested for Primary Open Angle Glaucoma

What does this result mean?

Because this variant is inherited in an autosomal recessive manner (meaning dogs need two copies of the variant to develop the disease), Irina is unlikely to develop this condition due to the variant. This result may be important if you decide to breed this dog - we recommend genetic testing potential mates for this condition.

What is Primary Open Angle Glaucoma?

Glaucoma is the result of high intraocular pressure, and if left untreated, can lead to pain and vision loss. The "angle" of primary open glaucoma (POAG) refers to the intersection of the cornea and the iris: this is where aqueous humor (clear fluid filling the eye) must flow to exit the eye. In open angle glaucoma, the iridocorneal angle remains unchanged, and other factors contribute to increased resistance to outflow.

When signs & symptoms develop in affected dogs

Glaucoma has an adult onset.

How vets diagnose this condition

Veterinarians perform a complete ocular exam and use a device to measure the intraocular pressure of the eye to diagnosis glaucoma. At risk dogs are often tested at their yearly exam.

How this condition is treated

With early diagnosis, glaucoma can be managed with a variety of medical and surgical options. In severe end-stage cases, surgical removal of the affected eyes may be indicated.

Actions to take if your dog is affected

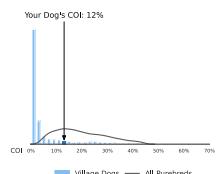
- While both eyes are usually affected with glaucoma, one is often affected before the other. In these cases, many studies indicate that prophylactic treatment of the unaffected eye can significantly prolong its health and vision.
- Left untreated, the unaffected eye usually develops glaucoma within a year, whereas prophylactic treatment can extend the health of the eye to two and a half times that.

IRINA

DNA Test Report

Test Date: October 3rd, 2023

embk.me/irina7

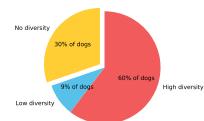

INBREEDING AND DIVERSITY

CATEGORY

RESULT

Inbreeding | Gene: n/a | Genetic Result: **12%**

Inbreeding is a measure of how closely related this dog's parents were. The higher the number, the more closely related the parents. In general, greater inbreeding is associated with increased incidence of genetically inherited conditions.

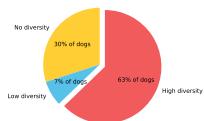

12%

Immune Response 1 | Gene: DRB1 | Genetic Result: **No Diversity**

Diversity in the Major Histocompatibility Complex (MHC) region of the genome has been found in some studies to be associated with the incidence of certain autoimmune diseases. Dogs that have less diversity in the MHC region—i.e. the Dog Leukocyte Antigen (DLA) inherited from the mother is similar to the DLA inherited from the father—are considered less immunologically diverse. A High Diversity result means the dog has two highly dissimilar haplotypes. A Low Diversity result means the dog has two similar but not identical haplotypes. A No Diversity result means the dog has inherited identical haplotypes from both parents. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Cushing's disease, but these findings have yet to be scientifically validated.

No Diversity

How common is this amount of diversity in purebreds:



Immune Response 2 | Gene: DQA1 and DQB1 | Genetic Result: **High Diversity**

Diversity in the Major Histocompatibility Complex (MHC) region of the genome has been found in some studies to be associated with the incidence of certain autoimmune diseases. Dogs that have less diversity in the MHC region—i.e. the Dog Leukocyte Antigen (DLA) inherited from the mother is similar to the DLA inherited from the father—are considered less immunologically diverse. A High Diversity result means the dog has two highly dissimilar haplotypes. A Low Diversity result means the dog has two similar but not identical haplotypes. A No Diversity result means the dog has inherited identical haplotypes from both parents. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.

High Diversity

How common is this amount of diversity in purebreds:

